Под знаком корня квадратичная функция y=-21+10x-x^2.
График - парабола с ветвями "вниз", т.к. а=-1 <0.
Абсцисса вершины параболы: Х в.=-b/2a=-10/-2=5
Посмотрим,принадлежит ли полученное значение Х области определения, ведь выражение под знаком корня должно быть >=0:
-21+10*5-5^2=4. Все в порядке.
Итак,в точке х=5 функция Y=-21+10x-x^2 принимает наибольшее значение, равное 4. Функция, стоящая под корнем, монотонная,
поэтому y=V(-21+10x-x^2) в точке х=5 также принимает наибольшее значение, равное V4=2 ( V - знак корня).
Ответ: У наиб.=2
Х-скорость течения
4*(15+х)=60
15+х=60:4
15+х=15
х=0км/ч
1))11/6*9/10=33/20-7/4=33/20-35/20=-1/10
2))-1/10+3/2=-1/10+15/10=-14/10=-7/5=-1.4 как то так