Если пристань В выше по течению, то от А до В катер шел против течения.
Скорость катера обозначим v, скорость по течению v+3, против v-3.
AB/(v-3) = 11,5
Если катер не дойдет 100 км до В и повернет обратно в А,
то он придет в А за тоже время, то есть 11,5 часов.
(AB-100)/(v-3) + (AB-100)/(v+3) = 11,5
Получили систему
{ AB = 11,5*(v-3)
{ (11,5*(v-3) - 100)/(v-3) + (11,5*(v-3) - 100)/(v+3) = 11,5
Умножаем всё на (v-3)(v+3)
11,5*(v-3)(v+3) - 100(v+3) + 11,5*(v-3)^2 - 100(v-3) = 11,5*(v-3)(v+3)
11,5*(v^2-6v+9) - 100v - 300 - 100v + 300 = 0
Приводим подобные и умножаем всё на 2
23v^2 - 138v + 207 - 400v = 0
23v^2 - 538v + 207 = 0
D/4 = (b/2)^2 - ac = 269^2 - 23*207 = 67600 = 260^2
v1 = (-b/2 - √(D/4)) / a = (269 - 260)/23 = 9/23 - слишком мало, не подходит.
v2 = (269 + 260)/23 = 529/23 = 23 - подходит.
Ответ: v = 23 км/ч
(x - 4)² - 25x² = (x - 4)² - (5x)² = (x - 4 - 5x)(x-4 +5x) =
= (-4x - 4)(6x - 4) = - 4(x +1) * 2(3x - 2) =
= - 8(x+1)(3x - 2)
a²-b²-4b - 4a = (a-b)(a+b) - 4(a+b) = (a+b)(a-b -4)
(a+b)² - (a-b)² = 4ab
a² + 2ab + b² - (a² - 2ab + b²) = 4ab
a² + 2ab + b² - a² +2ab - b² = 4ab
(a² -a²) + (b² - b²) + (2ab+2ab) = 4ab
4ab = 4ab
тождество доказано
пусть x это колво положеных денег
x*0,11=x*0,08+900
x*0,03=900
3x=90000
x=30000 рублей
1)3а(а2-36)=3а*(а-6)(а+6)
2)3х(в квадрате)*(х2*у2)=3х2(х-у)(х+у)
X Y ¬X+Y ¬Y*X (¬X+Y)*(¬Y*X)
л л и л л
л и и л л
и л л и л
и и и л л