Ответ:
57.
Объяснение:
сторона ромба равна 76+19=95.
Высота образовала прямоугольный треугольник, у которого гипотенуза равна 95. а один из катетов равен 19. Высота ромба равна другому катету этого треугольника.По теореме Пифагора h²=95²-76².
h²=9025-5776=3249;
h=√3249=57.
Cos(a)/ctg(a) = (cos(a)*sin(a))/cos(a) = sin(a)
Обозначим сторону АВ за х, тогда:
Решим задачу так:
1. Построим прямую а и точку А на ней.
2. Из точки А построим угол, равный известному нам, и под этим углом прямую b
3. Построим прямую д, паралелльную b, на расстоянии, равном высоте h из условий задачи. Обозначим точку В пересечения прямых b и д.
4. Из точки В построим известный нам угол "в другую сторону" (т.е. не параллельно прямой b) и прямую с под этим углом. Обозначим точку С пересечения прямых
б и с.
Ура, треугольник АВС построен.
Для доказательства построим из точки В отрезок ВЕ перпендикулярный отрезку АС. Поскольку точка В лежит на прямой д, параллельной отрезку АС и находится на расстоянии h, значит ВЕ является высотой, построенной к боковой стороне и равно h
2(3i+2j)-3(5i-4j)=6i+4j-15i+12j=16j-9i