Ответ:
35
Объяснение:
1. Так как прямые KM и MR имеют общую точку, они пересекаются.
2. Пересекающиеся прямые лежат в одной плоскости.
3. Так как прямые NP и KM параллельны, то угол между NP и MR соответственно равен углу между KM и MR,
то есть 35°.
1)Т.к. АСВ и ВСD смежные, то угол АСВ=180-110=70.
2)Сумма углов треугольника равна 180, угол АВС=180-70-32=180-102=78
Дан треугольник АВС
угод А=углуС=30 градусов
ВЕ=6 высота к основаниюТреугольник АВЕ-прямоугольный
АВ=2ВЕ (катет лежащий напротив 30 градусов равен половине гипотенузы)
АВ=12
АЕ=корень(144-36)=6корень3
АС=2АЕ=12корень3
Очевидно, что высота трапеции h=2r=2*3=6
Площадь трапеции S=(a+b)*h/2
60=(a+b)*6/2
(a+b)/2=10 (1)
Треугольники MOC и OCE прямоугольные с общей гипотенузой. Следовательно, они равны между собой
CE=MC=a/2
Треугольники OED и OND прямоугольные с общей гипотенузой. Следовательно, они равны между собой
ED=ND=b/2
CD=CE+ED=a/2+b/2=(a+b)/2=10
Площадь треугольника COD равна 1/2CD*EO=1/2*10*3=15
Треугольник CPD прямоугольный, по т.Пифагора
PD²=CD²-CP²=10²-6²=64
PD=8
С другой стороны
PD=b/2-a/2
b/2=PD+a/2
b/2=8+a/2
b=16+a
Подставляя в (1) найдем a
(a+16+a)=20
2a=20-16
2a=4
a=2
b=16+2=18
Рассматривая прямоугольные треугольники OCE и OED по т.Пифагора находим
OE=√(3²+(a/2)²)=√(9+1)=√10
OD=√(3²+(b/2)³)=√(9+81)=√90=3√10
Cтороны треугольника CPD найдены
Площадь треугольника и его радиус описанной окружности связаны формулой
S=OE·OD·CD/(4R)
R=OE·OD·CD/(4S)
R=√10·3√10·10/(4·15)=300/60=5
Ответ: 5 см