Объём шара:
V = 4/3πR³ ⇒ R = ∛3V/4π = ∛3*2/4*3.14 = ∛6/12.56 = 0.77
R - 1/3 высоты, следовательно:
Н = 3*0.77 = 2.31
Найдём радиус основания - катет плоскости прямоугольного треугольника (высота в равностороннем треугольнике делит его на два прямоугольных).Так как треугольник равносторонний, то все углы по 60 град, следовательно найдём катет изходя из формулы
Н/а = tg60 град ⇒ а = Н / tg60 град = 2.31/1.73 = 1.33
Значит радиус основания r = а = 1.33,исходя из этого найдём площадь основания,как площадь круга(окружности):
S = πR² = 3.14* 1.33² = 5.55
Объём конуса:
V = 1/3*S·H = 1/3*5.55*2.31 = 4.27
решение задания смотри на фотографии
#1
1)AB=AC( по условию )
2) AD-общая
3) угл.BAD=угл.CAD ( т.к. AD-биссектриса )
Зн. ^ABD=^ ACD ( по двум сторонам и углу между ними)
#2
1.BD-Высота( по признаку высоты, проведенной к основанию равнобедреннго треугольника)
2. угл.BDC= 90° ( т.к. BD-высота )
3.угл.BAC=180°-угл.1 ( по свойству смежных углов )
угл.ВАС=180°-130°=50°
4.угл.ВАС=угл.ВСА=50° ( как углы при основании равнобедренного треугольника )
Ответ:Угл.ВDС = 90°; угл. ВСА = 50°
#3
[-угол
1. Т.К.[ODB=[OBD ( как углы при основании равнобедренного треугольника ) и [MDB=[KBD( по условию ), то
[ MD0=[KBO.
2Рассмотрим ^ DMO и ^ BKO:
1)[MOD=[KOB ( как вертикальные )
2) DO=OB ( как боковые стороны равнобедренного треугольника )
3) [MDO=[KBO ( из п. 1)
Зн. ^DMO=^BKO ( по стороне и двум прилежащим к ней углам )
3. Т.К. ^DMO=^BKO, то
DM=BK
Что и требовалось доказать.
S=1/2*a*h
h=√(a^2-a^2/4)=a√3/2
S=a^2√3/4
R=a^3/4S=a^3*4/4a^2√3=a/√3
a=R√3=8√3 см
S=64*3*√3/4=48√3 см^2