<em>О - точка пересечения серед. перпендикуляров ∆ АВС. ОА=8 см, ∠АОВ = 60°. </em><u><em>Найти длину АВ</em></u><em>.</em>
* * *
Точка пересечения серединных перпендикуляров треугольника - центр описанной окружности. АО=ОВ=R=8 см. Угол при вершине равнобедренного ∆ АОВ=60°, углы при АВ равны 60°. Следовательно, ∆ АОВ - равносторонний. => АВ=8 см.
Это равенство треугольников
В этой задаче надо знать, что в ортотреугольнике (так называется треугольник A1B1C1) высоты AA1, BB1 и CC1 треугольника ABC являются биссектрисами.
Если это известно, то решение занимает пару строчек.
H - точка пересечения высот.
В четырехугольнике AC1HB1 два угла прямые, поэтому ∠CAB = 180° - ∠B1HC1; но ∠B1HC1 = 180° - (∠HC1B1 + ∠<span>HB1C1);
поэтому </span>∠CAB = ∠HC1B1 + ∠HB1C1 = (∠A1C1B1 + ∠A1B1C1)/2
точно так же ∠CBA = ∠HA1C1 + ∠HC1A1 = (∠B1A1C1 + ∠B1C1A1)/2
∠BCA = ∠HA1B1 + ∠HB1A1 = (∠C1A1B1 + ∠C1B1A1)/2
то есть углы треугольника ABC будут такие
(20° + 90°)/2 = 55°; (20° + 70°)/2 = 45°; (70° + 90°)/2 = 80°;
Теперь я приведу одно из нескольких известных мне доказательств свойства ортотреугольника. Это гораздо интереснее и полезнее, чем эта задачка.
Если построить окружность на стороне AC, как на диаметре, то она пройдет через точки A1 и C1 (из за прямых углов). Это означает, что ∠CC1A1 = ∠CAA1; как вписанные углы, опирающиеся на одну и ту же дугу CA1;
Точно так же, если построить окружность на стороне BC, как на диаметре, то она пройдет через точки B1 и C1, и ∠CC1B1 = ∠CBA1; как вписанные углы, опирающиеся на одну и ту же дугу CB1;
Но ∠A1AC = ∠B1BC = 90° - ∠ACB; следовательно ∠A1C1C = ∠B1C1C,
ЧТД => СС1 является биссектрисой ∠B1C1A1;
Само собой, и про остальные высоты все доказывается точно так же.
<NEP=<EPK (накрест лежащие углы при параллельных прямых MN и PK и секущей PE)
ΔENP-равнобедренный, так как по условию NP=NE⇒<NEP=<NPE=20°
<NPK=20°+20°=40°
<K=180°-40°=140° , так как сумма односторонних углов при параллельных прямых равна 180°
Ответ: <К=140°
BD равна 35 см по теореме пифагора, а вот KD не могу найти