Видно пол номера перефоткай
Пусть х - ВК, 3х - КС, Н - высота ромба
<span>ВС * Н = 4х * Н = 48
</span><span>х * Н = 12
</span>Площадь треугольника АВК =
<span>S = ВК * Н / 2 = х * Н / 2 = 12 / 2 = 6</span> см^2
∠САD = 180⁰ - ∠BAC - ∠ABC = 180⁰-30⁰-110⁰ = 40⁰
Из ΔАСD:
CD² = AC² + AD² - 2AC·AD·cos<span>∠CAD = 16+64-64cos40 = 80-64cos40 = 8(10-8cos40)
CD = </span>√<span>8(10-8cos40) </span>≈ 5,6
Задание №1.
Дано:
"ABCD" - трапеция; "" - точка пересечения "AC" и "DB".
Доказать:
Δ"AOD" ∞ Δ"COB".
Доказательство:
Так как в точке"" образуются вертикальные углы, то вполне разумно сказать, что ∠"AOD" = ∠"COB". У нас дана трапеция, а у неё основания параллельны. Сторона "" служит секущей и выходит, что ∠"ADO" = ∠"BOC" как накрест лежащие. Мы доказали равенство двух углов у каждого треугольника, выходит, что Δ"AOD" ∞ Δ"COB" по первому признаку подобия <em>(Два угла у одного треугольника соответственно равны двум углам другого треугольника)</em>.
Задание №2.
Дано:
<em>(Для удобства обозначим треугольники) </em>
<em>(маленький)</em> Δ"ABC" и <em>(большой) </em>Δ"DFG"; "AB" = 8 см; "AC" = 10 см; "DG" = 15 см; "FG" = 9 см; ∠"B" = ∠"F" = 90°.
Доказать:
Δ"ABC" ∞ Δ"DFG".
Доказательство:
Найдём сначала коэффициент подобия этих треугольников. Для этого, возьмём известные нам соответственные стороны: "AC" и "DG":
1. = .
Возьмём теперь другую пару соответственных сторон и сравним их коэффициент подобия с первой парой, но нам нужно сначала найти сторону "DF":
2. 15^{2} - 9^{2} = 225 - 81 = 144 -> 12 см.
Теперь, сравним наконец коэффициенты:
3. и = и .
Данное решение является свидетелем того, что эти треугольники равны по второму признаку подобия треугольников <em>(Две стороны соответственно подобны двум сторонам другого и угол между ними равен )</em>
Удачи!