Стержень - это цилиндр высотой Н и радиусом R.
Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d:
D=d=a√2=12√2.
Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH.
Объем прям.параллелепипеда Vп=a²H=144H.
Объем проделанного отверстия радиусом r=6/2=3:
Vо=πr²H=9πH.
Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16)
Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
Проводим отрезки АО и ОВ, которые являются радиусами. Треугольник АВО, угол АОВ=120, СО - высота = 23 =биссектрисе, медиане, угол АОС=120/2=60
Треугольник АОС угол ОАС=90-60=30 и лежит он напротив высоты, значит высота =
=1/2 гипотенузы АО
АО= 2 х 23=46 = радиусу
Диаметр = 46 х 2= 92
Ответ:
108°
Объяснение:
Углов при основании 2, и они равны.
36°*2=72°
Найдём угол между боковыми сторонами.
Сумма углов треугольника - 180°.
180°-72°=108°
По теореме Пифагора для прямоугольного треугольника KMN:
По условию задачи MN = 50, а
Подставим эти значения в (1):
Найдем KN:
Найдем отрезки, на которые делит высота гипотенузу по формулам:
Найдем высоту проведенную к гипотенузе: