0,25х²-4=0
х²=4/0,25=16
х₁=4 х₂=-4
х₁*х₂=-16
А если без решения, по т.Виета, х₁*х₂=-4/0,25=-16
9-х²/16=0
х²=9:1/16=144
х₁=12 х₂=-12
х₁*х₂=-144
А если без решения, по т.Виета, х₁*х₂=-9:1/16=-144
18x-4=-2x+16
20x=20
x=1
y=-2+16=14
√(2x+1)≤x-1
ОДЗ: 2x+1≥0 2x≥-1 |÷2 x≥-1/2 x-1≥0 x≥1 ⇒ x∈[1;+∞).
(√(2x+1))²≤(x-1)²
2x+1≤x²-2x+1
x²-4x≥0
x*(x-4)≥0
x*(x-4)=0
x₁=0 x₂=4 ⇒
-∞____+____0____-____4____+____+∞ ⇒
x∈(-∞;0]U[4;+∞).
Согласно ОДЗ:
Ответ: x∈[4;+∞).
По теореме Виета:
Из условия , т.е.
С учетом существования корней, ответ:
Поймём, что 100 = 10² и приравняем показатели.
1 - lgx = 2(2+lgx) (x>0)
1 - lgx = 4 + 2lgx
3lgx = -3
lgx = -1
x = 1/10= 0,1