Прямые BC и AD, BA и CD
в одних плоскостях
Развернутый угол =180 град
180-144=36 град
два угла по 36 град
два угла по 144 град
б) один угол 1 часть, второй угол 9 частей
1+9=10 частей
развернутый угол=180 град
180:10=18 град первый угол
18х9=162 град второй из смежных углов
Удачи!
В основании прямоугольник. В прямоугольнике все углы прямые.
AB⊥BC
АВ- проецкия наклонной КВ.По теореме о трёх перпендикулярах КВ⊥ВС.
Значит треугольник КВС - прямоугольный
По теореме Пифагора
ВС²=КС²-КВ²=9²-7²=32
ВС=√32=4√2
Противоположные стороны прямоугольника равны, значит АD=BC=4√2
Треугольник АКD - прямоугольный. ( АК⊥ плоскости АВСD, а значит перпендикуляр любой прямой , лежащей в этой плоскости)
По теореме Пифагора
AK² = KD²- AD²=6²-(4√2)²=36-32=4
AK=2
Расстоянием между скрещивающимися прямыми
АК и СD будет расстояние между плоскостями АКВ и плоскостью, параллельной этой плоскости и проходящей через CD.
Это расстояние равно AD
ответ. АК =2 см, АD= 4√2 cv
Основание правильной четырёхугольной пирамиды — квадрат, а <span>боковые грани — равные равнобедренные треугольники.
</span>Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=Н - это высота пирамиды.
Проведем апофему пирамиды SK - это <span>высота боковой грани.
<</span>SAО=<SBO=<SCO=<SДО=α.
<span>Из прямоугольного ΔSАО: </span>
АО=SО/tg α=H/tg α
Диагональ основания АС=ВД=2АО=2H/tg α
Сторона основания АВ=АС/√2=2H/√2tg α=√2H/tg α
Объем
V=АВ²*SO/3=(√2H/tg α)²*Н/3=2H³/3tg² α