По теореме синусов:
угол B=24°16 минут
угол A=180°-(110°+24°16 минут)
угол A=45°43 минуты
c/45°43 минуты
≈1,4
Меньший угол равен х, больший угол равен 4х. Составим уравнение
х+4х=180,
5х=180
х=180/5=36°. Меньший угол 36°, больший угол 4·36=144°.
Треугольники АВЕ и АЕО равны. Т.к АЕ - общая, ВЕ=ЕО из условия, угол при Е 90 град.
следовательно АВ=АО
Тругольник АВО - равносторонний. Угол АВО=60 град, А угол АВС=2*60=120град.
Угол АОD=180-60=120 град
Треугольник АОD - равносторонний: АО=OD=радиус,
след. угол ОАD=ODA=(180-120)/2=30 град.
Итак, в четырехугольнике АВСD
угол А= углу С =60+30=90 град
угол D=30+30=60 град
угол В=60+60=120град
Градусные меры дуг:
АВ=ВС=60 град
АD=DC=120 град
<em>В плоскости, касательной к шару радиуса 6 см, обозначена точка М на расстоянии 8 см от точки касания. Чему равно <u>расстояние от точки М до центра шара?</u></em><u>
</u>Сделаем рисунок.
Так как плоскость не пересекает шар, она касается его в одной точке. Радиус, проведенный в точку касания, перпендикулярен плоскости. Обозначим цент шара О, точку касания А. ∆ ОАМ - прямоугольный. Отношение его катетов 3:4, треугольник египетский, в котором отношение сторон 3:4:5. Тогда гипотенуза <em>ОМ</em>=5•(6:3)=<em>10 см</em>.
<em>
</em>
В треугольнике DME: угол DME - тупой (смежный с острым), значит, угол DEM - острый (двух тупых в тр-ке не может быть). А против большего угла в тр-ке лежит большая сторона, т.е. DE>DM