Длина окружности радиуса 8 см равна 2*пи*8. Значит длина круглой границы сектора будет равна длине окружности разделить на три (2*пи*4), потому что 90 градусов, это четверть окружности.
<span>Эта длина является длиной окружности основания конуса. Значит радиус основания конуса равен 2 см (длина окружности разделить на 2пи) . Высота конуса найдется по теореме Пифагора: корень из (8^2-2^2). Площадь осевого сечения (равна площади равнобедренного треугольника с высотой равной высоте конуса и основанием, равным диаметру) равна радиусу, умноженному на высоту сечения: 4*2корней из 15</span>
Рассмотрим треуг-ки CLO и AGO. Они равны по второму признаку равенства треуг-ов: сторона и два прилежащих к ней угла одного треуг-ка соответственно равна стороне и двум прилежащим к ней углам другого. В нашем случае:
- СО=АО, т.к. диагонали параллелограмма точкой пересечения делятся пополам;
- <LCO=<GAO как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АС;
- <COL=<AOG как вертикальные углы.
У равных треугольников равны и соответственные стороны CL и AG. <span>
</span>
1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
к - это какой то коаыициент
Вершины вписанного квадрата лежат на сторонах правильного треугольника.
Сделаем рисунок и используем его при решении.
Обозначим сторону данного правильного треугольника а
Н - середина КМ и и середина АD
АН=HD
АК=MD
Пусть сторона AD квадрата АВСD равна х
Тогда АD=х,
а DМ =(а-х):2,
DМ противолежит углу 30°, поэтому
СМ=2DМ=2(а-х):2= а-х
Найдем сторону а треугольника, в который вписан квадрат, из его площади, равной по условию 9√3
Площадь равностороннего треугольника находят по формуле:
S=(а²√3):4
9√3=(а²√3):4
36√3=а²√3
а²=36
а=6
ДМ= (6-х):2
СМ=2 ДМ=(6-х)
СД=СМ·sin 60°=(6-х)·√3):2
СД=АД=х
2х=6√3-х√3
2х+х√3=6√3
х(2+√3)=6√3
х=6√3:(2+√3)
Периметр равен 4 СД
Р=4·6√3:(2+√3)=24 √3:(2+√3)