обозначим меньшую сторону как х а большую как 6х тогда наш периметр равен
Задача элементарная, но мне захотелось написать "совершенно" формальное решение.
Пусть центр квадрата P, середина (это так надо перевести слово "серебро" в контексте задачи :)) BC - M.
Ясно, что центр окружности лежит на прямой, параллельной BC и AD и проходящей через середину MP - точку K. Пусть эта прямая пересекает AB в точке N. Поскольку окружность симметрична относительно KN, то PK и AN - это половины хорд, перпендикулярных линии KN, проходящей через центр.
Ясно, что AN = 3a/4; PK = a/4; NK = a/2; где a - сторона квадрата.
Расстояние до хорды связано с радиусом и половиной длины хорды теоремой Пифагора. Разность расстояний от центра до ПОЛУхорд AN и PK равна NK; Если обозначить радиус окружности R, то
√(R^2 - (a/4)^2) - √(R^2 - (3a/4)^2) = a/2; пусть 4R/a = x; тогда
√(x^2 - 1) = √(x^2 - 9) + 2;
x^2 - 1 = x^2 - 9 + 4√(x^2 - 9) + 4;
x^2 - 9 = 1; x = √10;
ну, и 4/a = 2;
R = √10/2;
Разумеется, это простое упражнение на координатный метод.
По сути надо найти окружность, проходящую через точки (0,1) (0,-1) и (-2,-3) для квадрата со стороной 4;
Центр в точке (b,0)
b^2 + 1 = R^2;
(b + 2)^2 + 3^2 = R^2;
b = -3; R = √10; это результат для квадрата со стороной a =4;
то есть при a = 2; R = √10/2;
биссектриса делит сторону на отрезки пропорциональные прилежащим сторонам,то ОМ:МК=ОР:КР ОР=х, ОМ=15-х, (15-х):8=х:2, х=9 ОР=9,ОМ=6, ОР-ОМ=3.
Диагональ куба равна a√3, где а - ребро куба.
Найдем ребро куба:
а√3 = 15
а = 15 : √3
а = √75 = 5√3
Объем Куба:
V = а³
V = (5√3)³ = 375√3 (куб.ед.)
Ответ: 375√3 куб.ед.
Ответ
1)180
Сумма углов параллелограмма равна 360 градусам, тогда угол B равен 90 градусам угол CAB=90/2, угол DCA=90/2, следовательно 90+45+45=180