Объем по формуле
V = a*b*c= 4*4*3 = 48 - ОТВЕТ
Лови, малой, можешь не благодарить))
Нет, треугольники не подобны, т.к известно только то, что прямые углы равны и сторона AC:A'C'=2:1. Но этого мало, чтобы доказать подобность треугольников
Т.к треугольник АВС- равнобедренный, то углы при основании равны(угол А= углу= С). АD биссектриса=> делит угол А пополам. Тогда угол С в 2 раза больше больше угла DAC. Пусть угол DAC=x; тогда угол С=2x.
<em>Биссектриса угла при основании равнобедренного треугольник равна основанию. </em>Тогда треугольник ADC- равнобедренный. Углы при основании равны(угол С = углу ADC= 2x) . Отсюда выражаем сумму углов, равную 180.
2x+2x+x=180
5x=180
x=36
тогда угол DAC=36, ADC=C= 72.
DH- расстояние, т.е не что иное, как высота. угол DHA=90, DAH=36
sin(DAH)= DH/AD; AD=AC=6/sin36.
DC<span>∈BC. А т.к треугольник АDC- равнобедренный, то (расстояние)высота АО будет являться и биссектрисой и медианной.
=> угол ОАС= 18, cosOAC=AO/AC.
cos18=AO/(6/sin36)
AO= (6cos18)/sin36</span>
т.к. площадь всей поверхности равна 108,а площадь боковой поверности 60,то площадь основания равна 48,а так же равна a^2/4,тогда а-длина ребра основания равна 8
т.к. площадь боковой поверхности равна 60,а так же ранвна Pосн*h/2,где h-апофема,,а Pосн=3a,то h=5,т.к пирамида правильноя,то боковые грани равны,и являются равнобедренными треугольниками,тогда h-медиана,тогда
b-бокове ребро найдем по теореме Пифагора b==см