ОДЗ:
x²-10x+9>0
x²-10x+9=0
D=100-36=64
x₁=(10-8)/2=1
x₂=(10+8)/2=9
+ - +
--------- 1 ------------- 9
------------\\\\\\\\\\\ \\\\\\\\\\\\\
x∈(-∞; 1)U(9; +∞)
Так как 1/2<1, то
x² -10x+9≤(1/2)⁰
x² -10x+9≤1
x² -10x+9-1≤0
x² -10x+8≤0
x² -10+8=0
D=100-32=68
x₁=(10-√68)/2=5-√17≈ 0.88
x₂=5+√17≈ 9.12
+ - +
---------
5-√17 -------------- 5+√17 -----------
\\\\\\\\\\\\\\\\
x∈[5-√17; 5+√17]
Объединяем два множества:
--------
5-√17 ---- 1 ---------------- 9
-------5+√17 ------------
\\\\\\\\\\ \\\\\\\\\\
х∈[5-√17; 1)U(9; 5+√17]
Ответ: [5-√17; 1)U(9; 5+√17]
1
2sin(5x/2)cos(3x/2)+2sin(5x/2)cos(x/2)=2sin(5x)/2*(cos(3x/2)+cos(x/2))=
=2sin(5x/2)*2cos(x)8cos(x/2)=4sin(5x/2)*cos(x)*cos(x/2)
2
-2sin(-3y)*sin5y-2cos(y/2)*cos5y=2(sin5y*sin3y+cos(y/2)*cos5y)
3
1-cos2a/(-sin2a)*(-ctga)=1-ctg2a*tga=1-tga/tg2a=1-tga*(1-tg²a)/(2tga)=
=1-(1-tg²a)/2=(2-1+tg²a)/2=(1+tg²a)/2=1/2cos²a
3
-sin2a/(1+cos2a) *ctga=[-2sina*cosa/(2cos²a)]*cosa/sina=-2