ПОМОГИТЕ КТО ЧЕМ МОЖЕТ !!! 60 БАЛЛОВ ! 2. рис 355. ABCD параллелограмм. Найти площадь ABCD 3.рис.356. Найти площадь ABC 4.рис.35
ПОМОГИТЕ КТО ЧЕМ МОЖЕТ !!! 60 БАЛЛОВ ! 2. рис 355. ABCD параллелограмм. Найти площадь ABCD 3.рис.356. Найти площадь ABC 4.рис.357. Найти площадь ABC 5.рис.358. Найти площадь ABC 6.рис.359. Найти площадь ABC
2. Опустим высоту BH из вершины В. Тогда угол DAB будет равен 30° (т. к. сумма углов параллелограмма, прилежащих к одной стороне, равна 180°). Тогда BH = 0.5*BA = 0.5*6=3 (т. к. в прямоугольном треугольнике катет, лежащий против угла в 30°, равен половине гипотенузы). Тогда площадь равна произведению основания на высоту S = 3*8=24.
3. Поскольку треугольник ABC - прямоугольный, его угол A равен 90°-45°=45°. Тогда треугольник ABC - равнобедренный с основанием AB, а AC=BC=4. Площадь прямоугольного треугольника равна половине произведения его катетов: S = 0.5*AC*BC = 0.5*4*4=8.
4. В треугольнике ABC угол A равен 180° - 100° - 50° = 30°. Опустим высоту BH из вершины В. Треугольник ABH - прямоугольный. В прямоугольном треугольнике катет, лежащий против угла в 30°, равен половине гипотенузы, значит, BH = 0.5*AB = 0.5*9=4.5. Тогда площадь равна половине произведения основания на высоту S = 0,5*4,5*12=27.
5. Поскольку треугольник ABD - прямоугольный, его угол ABD равен 90°-45°=45°. Тогда треугольник ABD - равнобедренный с основанием AB, а AD=BD=6. Площадь треугольника ABC равна половине произведения основания на высоту: S = 0.5 * AC*BD = 0.5 * (AD+DC)*BD= 0.5*9*6 = 27.
6. Треугольник ABC - равнобедренный, т. к. у него равны углы при основании. В треугольнике ABC угол B равен 180° - 100° - 50° = 30°. Опустим высоту AH из вершины A. В полученном треугольнике ABH угол ABH = 30°, значит, поскольку в прямоугольном треугольнике катет, лежащий против угла в 30°, равен половине гипотенузы, значит, AH = 0.5*AB = 0.5*12=6. Тогда площадь равна половине произведения основания на высоту S = 0,5*6*12=36.