Ответ:
Дано: КМРТ - трапеция,
КМ=РТ=17 см.
МР=10 см
КТ=40 см.
Найти S(КМРТ).
Решение: проведем высоты МН и РС, тогда НС=МР=10 см,
КН=СТ=(40-10)/2=15 см (ΔКМН=ΔРСТ по катету и гипотенузе, т.к. МН=РС и КМ=РТ)
(По теореме Пифагора МН=√(КМ²-КН²)=√(289-225)=√64=8 см.) отсюда следует:
S=(МР+КТ)/2 * МН=(10+40)/2 * 8=200 см²
Объяснение:
Ответ:
90 см²
Объяснение:
Дано: АВСД - трапеция, ∠А=∠В=90°, АВ=5 см, СД=13 см. АД=2ВС. Найти S(АВСД)
Пусть основание ВС=х см, тогда АД=2х см. Проведем высоту СН.
АН=ВС=х см, тогда ДН=2х-х=х см.
Рассмотрим ΔСДН - прямоугольный. По теореме Пифагора
ДН=√(СД²-СН²)=√(169-25)=√144=12 см.
АД=2ДН=12*2=24 см
ВС=12 см.
S=(ВС+АД):2*СН=(12+24):2*5=90 см²
Дано:
Т.MNK
P=96м
MK-основание
Найти стороны
Решение:
Т.к треугольник MNK равнобедренный то,Mn=Mk.В условии чего то неьу
На фото посмотри, надеюсь, что помогла))))))))))))))))))
Сделаем рисунок.
Проведем диагонали основания и отрезок из вершины куба до центра нижнего основания,
который находится в точке пересечения диагоналей квадрата ( все грани куба - квадраты)
<u><em>Обозначим вершины получившегося внутри куба треугольника А В С</em></u>.
Пусть ребро куба равно а.
Тогда<u> диагональ</u> его основания равна а√2, а ее половина
АС= 0,5а√2
АВ²=ВС²-АС²
АВ=а
По т. Пифагора
а²=р²-(0,5а√2)²
а²=р²- 0,5а²
1,5а²= р²
а²=р²:1,5
<em><u>а² - это площадь одной грани куба, а их у него 6. </u></em>
S полная =6 а²=6*р²:1,5=4 р²