Я так понимаю в условии описка и высота (не вершина) пирамиды равна 5см.
В основании правильной четырехугольной пирамиды SABCD лежит правильный четырехугольник (квадрат) ABCD со сторонами AB=BC=CD=AD=10 cм. Боковыми гранями данной пирамиды являются равные равнобедренные треугольники. Апофемой пирамиды является высота (SE) боковой грани пирамиды, проведенная к основанию (CD) боковой грани.
В прямоугольном треугольнике SAO:
Катет SO = 5см
Катет OE = 1/2 AB = 5 cм
По теореме Пифагора
SE² = SO² + OE²
SE² = 5² + 5²
SE² = 50
SE = √50
SE = 25√2 (см)
B рaвнoбeдрeннoм трeyгoльникe пpoвeдeннaя к eгo ocнoвaнию выcoтa тaкжe являeтся биcceктpиcoй и мeдиaнoй.
∠ВАС = ∠ВСА как углы при основании равнобедренного треугольника.
∠ВАС = ∠ВСА = (180° - ∠В)/2 = (180° - 20°)/2 = 160°/2 = 80°
ΔANC: ∠ANC = 90°, ∠ACN = 80°, ⇒ ∠CAN = 10°.
∠CAL = ∠CAB/2 = 80°/2 = 40° так как AL биссектриса.
∠NAL = ∠CAL - ∠CAN = 40° - 10° = 30°