Это смежные углы, их сумма равна 180°.
Пусть один угол равен х°, тогда второй угол равен 5х°. Угол между биссектрисами этих углов равен х/2 + 5х/2=(х+5х)/2;
Сумма смежных углов равна 180°:
х+5х=180;
(х+5х)/2=90°; это и есть искомый угол;
Нет необходимости вычислять эти смежные углы (они равны 30° и 150°). Угол между биссектрисами смежных углов всегда равен 90°.
ответ: 90
1) Опустим высоты трапеции на большее основание. Большее основание разбилось на три отрезка: х, 6, х.
2) Рассмотрим один из образовавшихся прямоугольных треугольников. Один острый угол его равен 135-90=45 градусов, значит второй острый угол его равен 90-45=45 градусов, т.е. получили равнобедренный прямоугольный тр-к с катетами х и высота h. Т.е. x=h.
3) По условию большее основание в 3 раза больше высоты, значит x+6+x=3h,
h+6+h=3h, 2h+6=3h, h=6. А нижнее основание тогда равно 3*6=18 (см).
4) Площадь трапеции равна произведению полусуммы оснований на высоту:
S=((6+18)/2)*6=12*6=72 (см^2)
P=a+2b
b=(P-a)/2=(36-16)/2=10 см
С по т. Пифагора
h=√(10²-8²)=6 см
S=a*h/2=16*6/2=48 см²
Ответ: 48 см²
Ответ:
Объяснение:
1)4+9=13частей.
2)26/13=2. см приходится на одну часть.
3)4*2=8 см. первый отрезок гипотенузы.; 2*9=18 см второй отрезок гипотенузы.
4) вся гипотенуза: 2*3=26 см.
Рассмотрим треугольники АВК и АКС. ( АК -высота).
Найдем высоту в Δ АВК.
АК²=АВ²-8²;
АК²=АС²-18². ( из второго Δ АКС).
Приравняем высоты.
АВ²-64=АС²-324.
АС²-АВ²=324-64=260.(1 уравнение).Для простоты: в²-а²=260.
Мы знаем:
АВ²+АС²=26² = 676 .(2 уравнение). Для простоты: а²+в²=676.
Получили систему уравнений. Решаем систему методом подстановки.
а²=208 ; в²=260+208=468.
а=√208≈14,4 см; в=√468≈21,6 см.