Пусть ABC - треугольник. Т.О - точка пересечения биссектрис.
Пусть A- 1k B= 2k C 3k (из данного отношения углов треугольника)
1k+2k+3k=180 6k=180 k=30
<A = 30 град <B= 2*30=60 <C= 3*30=90
Пересечение биссектрис больших углов - это биссектрисы В и С. Они образуют треуг ОВС с углами 45 и 30 и центральным О=180-(45+30)=105. Тогда меньший угол, образованный пересечением биссектрис = 180-105=75
Ответ 75
<em>Для первого ответа надо умножить координаты данного на два, а для второго - разделить координаты данного на два.</em>
<em>2а=</em><em>(-6;12), </em><em>над векторами должна быть черта.</em>
<em>0.5а=</em><em>(-1.5; 3)</em>
Высота АМ расположена против угла С. а CН - угла В..
АМ = АС*sin C.
СН = СВ*sin В.
Так как АС = СВ, то высоты относятся как синусы углов С и В.
C = 180 - 2B
sin C = sin 2B = 2sin B*cos B
sin B = √(1-cos²B) = √(1-1/9) = √(8/9) = 2√2/3.
sin C = 2*(2√2/3)*(1/3) = 4√2/9.
Отсюда соотношение высот АМ и СН треугольника ABC составляет:(4√2/9) / (2√2/3) = (4√2*3) / (9*2√2) = 2/3.
Ef-средняя линия трапеции (AE=EB, CF=FD) =>что EF=(смотри фото)
Надеюсь что помогла и что это то задание