S=8*8=64см^2
ABCD - ромб
угол BAC= угол BDC = 60гр.
угол ABD = угол ACD = 180гр. - 60гр. = 120гр.
AD и BC - диагонали, они пересекаются в точке О под прямым углом
AO = OD, BO = OC
рассмотрим треугольник BAC
угол ABC = угол ACB = 120гр./2 = 60гр.
все углы равны, значит треугольник BAC - равносторонний
BA = AC = BC = 8см.
рассмотрим треугольник BOC - прямоугольный
по т. Пифагора:
BO = 4см.
ответ: S=64, , BC = 8см., BAC= угол BDC = 60гр, ABD = угол ACD = 120гр.
Внешний угол треугольника равен сумме двух внутренних углов треугольника не смежных с ним, т.е. углов, отношение которых 5:7, найдём их. Внутренний и внешний с ним угол смежные, их сумма равна 180град., это 5+13=18 частей, т.е. 180:18=10град. приходится на одну часть. Третий внешний угол равен (5+7)·10=120град.
1) св-во биссектрисс АВ\ВС=АД\ДС
АВ\ВС=7\8
Р=45 получается АВ+ВС=30см
и составляем систему уравнений, где х-АВ, у-ВС
х\у=7\8, (30-у):у=7\8, 15у=240, у=16,
х+у=30, х=30-у, х=30-16=14.
получается АВ=14, ВС=16
3) надо делать по аналогии с 1)
1) ΔСАВ =ΔКДВ (по 1 - ому признаку равенства Δ).
<СВА = <КВД = 29 град
<FBK + <KBA = 180 град (смежные углы)
<KBA=<KBD +<CBA=29 град + 29 град=58 град
<FBK=180 град - 58 град = 122 град
Ответ: 3) 122 град
2) Так как ΔВСМ - равносторонний, то
ВС=СН=ВН
Р ΔВСМ = ВС+СН+ВН=3*ВС
39=3*ВС
ВС=39/3=13
АВ=ВС=13 см
Р ΔАВС=АВ+ВС+АС
450 мм=45 см
45=13+13+АС
АС=45-26=19 (см)
19 см=190 мм
Ответ: 4) 190 мм
3) ΔАВД=ΔСВЕ (по 2-ому признаку равенства Δ)
Р ΔАВД=Р ΔСВЕ
ВД=ВЕ=12 см
Р ΔАВД=АВ+АД+ВД=24+12=36 (см)
ДЕ=ВЕ/2=12/2=6 (см)
Р ΔВДЕ=ВД+ВЕ+ДЕ=12+12+6=30 (см)
Р ΔАВД + Р ΔСВЕ - Р ΔВДЕ=36+36-30=42 (см)
Ответ: 2) 42 см
Если нужно описание, подробности, обращайтесь