Ответ:S=16π
Объяснение:в основании образуется треугольник, состоящий из двух радиусов, к-ые относятся к дуге с 60°, и сторонной, полученной сечением квадрата. Сторону квадрата находим по Пифагору: √(a²+a²) = 4√2, a = 4. Основание треугольника так же равно 4. Этот треугольник, в первую очередь, является равнобедренным, так как имеет две равных сторон (радиусов окружности), но по той причине, что вершина равна 60, это правильный треугольник. Следовательно, все его стороны равны, что указывает, что радиусы равны 4. Зная радиус, мы можем найти длину окружности: 2πr=4π. Высотой цилиндра является сторона квадрата, т.к. второй пересекает его параллельно оси. Отсюда S=4π*4=16π
Теорему Пифагора применить надо:
с=\/а^2+в^2
В) с=\/6^2+8^2=\/36+64=\/100=10
Д) с=\/12^2+16^2=\/144+256=\/400=20
Решение в прикрепленном файле.
Комментарий к задачам № 6 и 4.
В этих задачах можно утверждать, что треугольники подобны как по второму признаку, так и по первому признаку подобия треугольников.
Эти утверждения равносильны.
Я лично здесь немного теряюсь. Я бы отметила два ответа: по первому признаку и по второму признаку. Если вам нужно выбрать только один вариант ответа, то выбирай на удачу.
АО1=4, СО2=60, Найти АР.
О1О2=4+60=64.
АК=О1О2=64.
АК║O1O2, АК⊥СД.
Тр-ки АСК и CHR подобны, так как ∠К - общий и оба прямоугольные, значит АК/СК=СК/РК ⇒ РК=СК²/АК.
КО2=АО1.
СК=СО2-КО2=60-4=56.
РК=56²/64=49.
АР=АК-РК=64-49=15 -расстояние между точками