Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
<em>СО</em>=АС=СВ=<em>10 </em>см
D=8 см
α=30°
Sполн.-?
H - высота, R - радиус
Sполн.=2πR(R+H)
H=8/2=4 см, т.к. катет, лежащий против угла в 30°, равен половине гипотенузы.
D=2R
D²+H²=d²
D=√(64-16)=√48=4√3 см
R=D/2=(4√3)/2=2√3 см
Sполн.=2πR²+2πRH=2π*4*3+2π*2√3*4=24π+16π√3 см²
Ответ: 24π+16π√3 см²
Могут. Если прямую b параллельным переносом вынести из плоскости, в которой она пересекается с прямой а, и обозначить ее с.
Примерно как на этом рисунке