Т.к. AD и BC диаметры, значит точка О делит их пополам, тем самым DO=OA и CO=OB. треугольник DOC равнобедренный, т.к. DO=CO, а угол OCD=30 градусов. по свойству равнобедренного треугольника углы при основании равны, следовательно OCD=ODC=30 градусов. AO=BO=OD=OC как радиусы или стороны равнобедренного треугольника, а если равны стороны, то равны углы. значит угол OAB= 30 градусов
Сумма односторонних углов=180 гр,зн.уг1+уг2=180 гр
угол2 возьмем за одну часть,угол1 соответственно 0,6 частей(60% от угл 2),тогда
1+0,6=1,6 частей
180/1,6=112,5=113гр угол 2
угол1=113*0,6=67,8=68 гр
Ответ:68,113 гр
Рассмотрим треугольник АВС - равнобедренный, в равнобедренном треугольнике АD-биссектрисса, медиана и высота, ВD=DС=15 см,
рассмотрим треугольник АВD - прямоугольный, по т. Пифагора АD=20cм
Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180.
Доказательство
пусть параллельные прямые a и b пересечены секущей с. Докажем, например,что угол 1+ угол 4=180. Так как А параллельно Б, то соответственные углы 1 и 2 равны. Углы 2 и 4 смежные, поэтому угол 2+ угол 4= 180. Из равенств 1=2 и угол 2+ угол 4=180 следует, что 1+4=180
Давай попробуем рассуждать логически, и одновременно рисовать чертёж. На чертеже изображаем равнобокую трапецию, вписанную в неё окружность, и хорду, соединяющую боковые стороны. Тут надо заметить два обстоятельства:
1. Эта самая хорда (давай ндадим ей имя 西)параллельна основаниям. Именно она равна 8.
2. Хорда 西 соединяет точки касания окружностью боковых сторон.
Проведём ещё на чертеже среднюю линию трапеции, она пройдёт точно через центр вписанной окружности (не буду подробно объяснять почему, сама обоснуй, если потребуется). Давай назовём её 中.
Итак, следи за руками: важный нюанс: данная по условию хорда 西 параллельна средней линии 中.
Радиус вписанной окружности обозначим банально буквой R.
Рассмотрим прямоугольный треугольник, образованный половиной хорды 西, радиусом окружности, и куском высоты трапеции. Косинус угла между хордой и радиусом окажется, что можно записать как cos(a) = (西/2) / R = 西 / (2R). Хорошо.
Далее заметим (опять следи за руками), что этот же угол образуется между этим же радиусом, и средней линией 中, потому что хорда и средняя линия параллельны друг другу, и пересекаются общим радиусом.
Замечательно. Выразим теперь длину средней линии через радиус и косинус угла. Получится:
1/2 中 = R / cos(a) = R * 2R / 西
домножим обе стороны уравнения на 2, и получим:
中 = 4R^2 / 西
Отлично. Приближаемся к цели. Теперь выразим площадь трапеции через её высоту и среднюю линию. Тут ещё надо заметить, что высота трапеции равна ровно два радиуса, видишь из чертежа?
S = (2R) * 中 = 2R * 4*R^2 / 西 = 8 * R^3 / 西. .
Подставим цифры:
125 = 8 * R^3 / 8
R^3 = 125
R = кубический корень (125) = 5
Ура! Мы нашли радиус вписанной окружности R, он равен 5.
Отсюда сразу записываем ответ: площадь круга s = пи * R^2 = 25*пи.
Это и есть ответ, как я думаю. Но проверь за мной, что не намухлевал.