Ответ:
Объяснение:
Рассмотрим треугольники ABO и DCO, у них:
BO=CO(по построению)
DO=AO(по построению)
Угол BOA= углу DOC(как вертикальные углы)
Следовательно треугольники ABO и DCO равны по первому признаку равентсва треугольников
Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А.
рассмотрим получившиеся треугольники АВО и АСО, в них:
угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента:
- катет ОВ = катет ОС (радиусы окружности)
- ОА - общ. гипотенуза
из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ
<span>ч. т. д.</span>
Решение в фото
............................
AC=4+BC
AB=AC+BC
AB=4+BC+BC
18=4+2BC
14=2BC
BC=7