Найдите значения выражений sin2α , cos3α , если
а) α =π/12 ; б) α =π/6 ; в) α =π /2 ; г) α = 2π/3 .
=======================================
2α = a) π/6 ; б) α =π/3 ; в) α =π ; <span> г) </span>α = 4<span>π/3 </span>
3α = a) π/4 ; б) α =π/2 ; в) α =3π /2 ; г) α = 2π
-----------------------------------------------------------------------
a) sin2α =sinπ/6 =1/2 ; cos3α =cosπ/4 =√2 /2 .
б) sin2α =sinπ/3 =√3 /2 ; cos3α =cos<span>π./2 =0 .
</span>в) sin2α =sinπ =0 ; cos3α =cos3π/2 =0
г) sin2α =sin4π/3 =sin(π+π/3) = -sinπ/3 = -√3 /2 ; <span>cos3α =cos2</span>π = 1.
x грамм-составляет одна часть. тогда 2x грамм -ромашки в сборе, 3x грамм- календулы в сборе. уравнение: 2x+3x=200; 5x=200; x=200/5=40. 40*2=80(грамм). Ответ: в сборе содержится 80 грамм ромашки.
А) (х+у):х=х:х+у:х=1+1:5=1,2
б)(3х-8у):у=3х:у-8у:у=3*х:у-8=15-8=7