А) f(-x)=
Следовательно, -х в кубе останется -х, значит, функция нечётная, так как, если бы была четной, то минус исчез бы
Аналогично с В
X²-3x+2<0
x1+x2=3 U x1*x2=2
x1=1 U x2=2
1<x<2
ax²-(3a+1)x+3>0
D=9a²+6a+1-12a=9a²-6a+1=(3a-1)²
√D=|3a-1|
x1=[(3a+1)-|3a-1|]/2a
x2=[(3a+1)+|3a-1|]/2a
1)1<[(3a+1)-|3a-1|]/2a<3
{[(3a+1)-|3a-1|]/2a>1 (1)
{[(3a+1)-|3a-1|]/2a<3 (2)
(1)[(3a+1)-|3a-1|]/2a>1
a)a<1/3
(3a+1+3a-1-2a)/2a>0
2>0
a∈(-∞;1/3)
b)a≥1/3
(3a+1-3a+1-2a)/2a>0
2(1-a)/2a>0
a=1 U a=0
0<a<1
a∈ [1/3;1)
(2)[(3a+1)-|3a-1|)/2a<3
(3a+1)-|3a-1|-6a))/2a<0
a)a<1/3
(3a+1+3a-1-6a)/2a<0
0<0
нет решения
b)a≥1/3
(3a+1-3a+1-6a)/2a<0
2(1-3a)/2a<0
a=1/3 U a=0
a<0 U a>1/3
a∈(1/3;∞)
Общее a∈(-∞;1) U (1;∞)
2)1<[(3a+1)+|3a-1|]/2a<3
[(3a+1)+|3a-1|]/2a>1 (3)
[(3a+1)+|3a-1|]/2a<3 (4)
(3)[(3a+1)+|3a-1|]/2a>1
a)a<1/3
(3a+1-3a+1-2a)/2a>0
2(1-a)/2a>0
a=1 U a=0
0<a<1
a∈ (0;1/3)
b)a≥1/3
(3a+1+3a-1-2a)/2a>0
2>0
a∈[1/3;∞)
(4)[(3a+1)+|3a-1|]/2a<3
a)a<1/3
(3a+1-3a+1-6a)/2a<0
2(1-3a)/2a<0
a=1/3 U a=0
a<0 U a>1/3
a∈(-∞;0)
b)a≥1/3
(3a+1+3a-1-6a)/2a<0
0<0
нет решения
Общее a∈(-∞;0) U (0;∞)
Ответ
a∈ (-∞;0) U (0;1) U (1;∞)
X^2 - 5x + 4 = 0
D = 25 - 16 = 9 = 3^2
x1 = (5 + 3)/2 = 8/2 = 4
x2 =( 5 - 3)/2 = 2/2 = 1
Ответ
4; 1
A1 = A0(1+X)
A2=(A1+30000)(1+X)=A0(1+X)^2+30000+30000x,
Подставив значение одержим уравнение второй степени, но прежде установим ограничение x>0:
60950=20000(1+x)^2+30000x +30000
20000x^2+70000x-10950=0
x = (-70000+76000)/40000=0.15 или 15%