Ответ: 60 градусов и 120 градусов.
Решение: Диагонали прямоугольника равны и точкой пересечения делятся пополам. (Углы ABCD) Пусть CD - х, тогда АС = 2х, √CAD = 30 градусов.
( В прямоугольном треугольнике катет, противоположный углу 30 градусов, равен половине гепотенузы) ΔAOD. - Равнобедренный, значит и √ODA = 30 градусов.
Тогда:
√AOD = 180 градусов - 2 *30 = 120 градусов. (√AOD и √DOC) - смежные, поэтому
√COD = 180 градусов - 120 градусов = 60 градусов.
Сд=ВД=СВ=50,7/3=16.9
АВ=АС=(51,5--16,9)/2=17,3
Решение:
Фигурой вращения будет являться конус с радиусом R=3 см, и образующей L=6 см
Тогда площадь боковой поверхности равна:
S=πRL=π*3*6=18 см².
1.В равнобокой трапеции АБСД, где АБ=ЦД=26, а БЦ=7 проведём высоту БК на основание АД. Тогда в треугольнике АБК, где угол К=90, а тангенс угла А = 2.4 имеем:
БК/АК=2.4 или БК=2.4*АК. По теореме Пифагора БК^2+АК^2=АБ^2.
Подставляя предыдущее равенствополучим:
(2.4*АК)^2+АК^2=АБ^2
или 6.76*АК^2=26^2=676
Отсюда
АК^2=100
АК=10.
2. Проведём высоту ЦМ на основание АД. Тогда в прямоугольнике КБЦМ КМ=БЦ=7. МД=АК=10, поскольку треугольник МЦД симметричен треугольнику КБА относительно прямой, проходящей через середины оснований равнобокой трапеции.
3. АД=АК+КМ+МД=10+7+10=27.
Пусть радиус круга равен r. Тогда длина окружности будет равна 2πr, а площадь круга πr². Из условия следует, что 2πr=πr², разделив обе части на πr, получим 2=r, то есть, такой круг существует и его радиус равен 2.