Во второй задаче надо найти угол ВСМ. Нет никакого ВСD
<span>Стороны АС, АВ, ВС треугольника АВС равны 3 корня из 2, корень из 14 и 1 соответственно. Точка К расположена вне треугольника АВС, причём отрезок КС пересекает сторону АВ в точке, отличной от В. Известно, что треугольник с вершинами К, А и С подобен исходному. Найдите косинус угла АКС, если угол КАС>90 градусов.</span>
8)Решение:
1)т.к. тр.ВDС-равнобедр след.тр.DBC=BCD=25гр
2)180гр-DBC-BCD=130гр
3)BDA=180гр-150гр(BDC)=30гр
4)т.к. тр. BAD-равнобедр. след. ABD=DAB=(180гр-30гр)/2=75гр.=угл А
5)АВС=DBC+ABD=25гр+75гр=100гр
<span>Пусть
биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке M (см. рисунок 1)
<BAD = 30⁰,
AB = 10см, BC = 20 см.
Тогда < BMA = < MAD = < MAB = 15⁰.</span>Значит,
треугольник ABM — равнобедренный и BM = AB = 10 см, поэтому MC = 20-10=10 см.
Проведем биссектрисы BQ и DP тупых углов параллелограмма. Треугольник PCD - равнобедренный :<CDP=<ADP=<CPD
PC=CD=10 см, ВР=20-10=10.
Точка М- середина стороны ВС ( см. рисунок 1), но и точка Р- середина стороны ВС( см. рисунок 2), значит точки М и Р совпадают ( см. рисунок 3), точки N и Q совпадают.
Четырехугольник LMTN - прямоугольник, так как из треугольника АLB найдём угол <ALB=180⁰-15⁰-75⁰=90⁰, а смежный с ним <MNL=90⁰.
Аналогично находим и другие углы четырехугольника.
Прямоугольные треугольники ALB, АLN и BLM равны по гипотенузе 10 см и двум равным острым углам.
Из треугольника ВML находим ML=10·cos15⁰
Из треугольника АLN находим LТ=10·sin15⁰
Площадь прямоугольника LMTN равна произведению сторон
S=ML·LT=10·cos15⁰ ·10· sin 15⁰ = 50 ·sin30⁰ = 25 ( кв. см)