S₁ = 1/2 ac sinα
S₃ = 1/2 bd sinα
S₂ = 1/2 cb sinα
S₄ = 1/2 ad sinα
S₁ · S₃ = 1/4 abcd sin²α
S₂ · S₄ = 1/4 abcd sin²α ⇒ S₁ · S₃ = <span>S₂ · S₄
Saob </span>· Scod = Saod · Scob
2(Scod)² = 18(Saod)²
<span>(Scod)² = 9(Saod)²
</span><span>Scod= 3Saod
</span>Saod = x, Scod = 3x, Saob = 6x, <span>Scob = 18x
</span>x + 3x + 6x + 18x = 28
x = 1
Saod = 1, Scod = 3, Saob = 6, <span>Scob = 18</span>
========== 4 ==========
Рассмотрим ΔA1B1C1, т.к. он равнобедренный, то B1O - высота, медиана и биссектриса. Значит, ∠B1 = 2 * ∠A1B1O = 2 * 32° = 64°. Т.к. треугольники по условию равны, то ∠B = ∠B1 = 64°
========== 4 ==========
Пусть боковая сторона AB = х см. Значит, вторая боковая сторона тоже BC = х см (т.к. треугольник равнобедренный). Основание AC = 5*x см
Р = AB + BC + CA
99 = x + x + x/5
99 = 11x/5
11x=99*5
x = 45 см.
Боковые стороны AИ = BC = 45 см. Значит, основание АС = 45/5 = 9 см
1) углы СВА и СВД смежные, по этому угол СВА = 180-138=42 градуса
2)углы СВА и САВ равны, т.к. это углы при соновании равнобедренного треугольника.
3) сумма углов треугольника = 180 градусам => 180-42-42= 96градусов
Ответ: угол С равен 96 градусов
Сумма всех углов четырёхугольника = 360 градусов
360 - 112 = 248( градусов) - это сумма всех остальных трёх углов четырёхугольника.
<span />
МЕНЯЮ СИМВОЛ УГЛА ( < на ∠) .
------------------------------------------------
Пусть ΔABC ; точки касания M∈ [AB] ,N∈[BC] и K∈[AC] и Пусть ∠KMN =α ;∠KNM =β.
∠KMN =180° -(∠KMA +∠NMB) =180° -((180°-∠A)/2 +(180° -<B)/2)) =(∠A+∠B)/2.
∠A+∠B =2α (1) ; * * * ⇒ ∠A =2α -∠B * * *
аналогично :
∠C+∠B=2β (2) . * * * ⇒ ∠C =2α -∠B * * *
Суммируем (1) и (2), получим:
(∠A+∠B+∠C )+∠B =2α +2β ;
180°+∠B=2α +2β ;
∠B =2(α +β) -180°.
поставляя это значение в (1) и (2) соответственно получаем :
∠A =2α - ∠B = 180° -2β ;
∠C =2α - ∠B = 180° -2α .
ответ: 2(α +β) -180° , 180° -2α , 180° -2β .
* * * * * * * комментария * * * * * * *
ΔAMK , ΔBMN равнобедренные.
* * * * * * * По другому * * * * * * *
∠AMK =(дугаMK)/2 =(∠MOK)/2 =(180° -∠A)/2.
∠NMB =(дугаMN)/2 =(∠MON)/2 =(180° ∠B)/2.
и т.д.