В ∆DBC sinC = BD/BC = 15/25 = 3/5 = 0,6.
По обобщённой теореме синусов:
2R = BC/sinA
2•32,5 = 25/sinA
65 = 25/sinA
sinA = 25/65 = 5/13.
sinA = BD/AB
5/13 = 15/AB => AB = 15/5•13 = 39
По теореме Пифагора:
AD = √AB² - BD² = √39² - 15² = √1521 - 225 = √1296 = 36.
В ∆BDC по теореме Пифагора:
DC = √BC² - BD² = √25² - 15² = √625 - 225 = √400 = 20.
AC = AD + DC = 36 + 20 = 56.
Ответ: 56, 39.
Площадь треугольника:
, где<em> а</em><span> - сторона, h - высота, проведенная к этой стороне.</span>
<span> , где </span><em>а</em><span> и b - стороны треугольника, — угол между этими сторонами.</span>
, где<em> а</em><span>, b, c - стороны треугольника, р - полупериметр.</span>
Из вершины тупого угла высота проводится, как обычно - перпендикуляр к противоположной стороне.
Чтобы провести высоты из вершин острых углов, надо продлить стороны, образующие тупой угол, и провести перпендикуляры к продолжению этих сторон.
Т.к. BE- биссектриса, то уголABE= углу CBE. Также, уголA= углуC и AB=BC, т.к. треугольник ABC- равнобедренный. Значит, треугольник ABE=CBE по 2 признаку равенства треугольников.