Площадь диагонального сечения параллелепипеда
У прямоугольного параллелепипеда диагональное сечение представляет собой прямоугольник.
Значит, для нахождения его площади нужно воспользоваться формулой площади прямоугольника:
S = a * b.
Сторона a совпадает с диагональю основания параллелепипеда.
Длину диагонали основания можно найти по теореме Пифагора, поскольку данная диагональ разбивает прямоугольник на 2 прямоугольных треугольника и является в каждом из них гипотенузой.
BD² = AB² + AD². => BD = √(AB² + AD²).
Сторона b равна высоте параллелепипеда (боковому ребру).
Высоту параллелепипеда можно, например, найти по его объёму и площади основания.
У прямоугольного параллелепипеда основание - это прямоугольник, поэтому площадь основания равна произведению его длины и ширины (на рисунке это AB и AD).
BB1 = V / (AB * AD).
Далее рассмотрим несколько примеров.
**
Пример 1
Стороны основания прямоугольного параллелепипеда равны 12 см и 4 см, а высота равна 5 см.
Нужно найти площадь диагонального сечения.
S (сеч) = √(12² + 4²) * 5 = √140 * 5 = 2√35 * 5 = 10√35 см.
**
Пример 2
Стороны основания и высота прямоугольного параллелепипеда относятся как 1:2:3, а его объём равен 48 см².
Нужно найти площадь диагонального сечения.
1) Сначала найдём, чему равны стороны основания и высота.
V = abc = 48.
Пусть a = x, b = 2x, c = 3x.
x * 2x * 3x = 48.
6x³ = 48.
x³ = 8.
x = 2.
Таким образом, стороны основания равны 2 и 4 см соответственно, а высота равна 6 см.
2) Теперь всё решается так же, как и в 1 примере.
S (сеч) = √(2² + 4²) * 6 = √20 * 6 = 2√5 * 6 = 12√5 см.