чтобы возвести дробь в степень надо возвести в степень и числитель и знаменатель
Результатом возведения дроби в степень будет новая дробь у которой числитель равен числителю этой дроби в возведенному в степень, а знаменателем будет знаменатель этой дроби в возведенный в степень.
Пример
<h1>(¾)³=3³/4³=27/64</h1>
Трудно сказать и маловероятно, что кто-то ответит. На счет дроббей очень все сложно.
Дробби те же лобби, а их множить уже некуда. Лобби достигли своего предела, хотя совершенству предела нет. Лобби можно только делить, поскольку умножить его на ноль нельзя, так же как и числа нельзя делить на ноль.
Что касается дробей - то тут все просто. Числитель умножаем на числитель, знаменатель на знаменатель. Например: 3/4 умножить на 2/5 равно 6/20 Т.е. 3 умножаем на 2 и записываем результат в числитель, а потом 4 умножаем на 5 и результат пишем в знаменатель.
Для того чтобы возвести число в дробную степень нужно выполнить две операции: во-первых, возвести число в степень числителя дробной степени (числитель - это то что у дроби находится сверху), во-вторых, из того что получилось после возведения в степень нужно извлеч корень той степени чему равен знаменатель дробной степени (знаменатель - это то что стоит внизу дроби). Например, нам нужно возвести 3 в степень 3/7, сначало мы возводим 3 в степень числителя т.е. в куб, получаем 27, а затем извлекаме корень седьмой степени. Если дробная степень представленна с целой частью, то есть например нужно 2 возвести в степень 1 целая 1/3 то степень нужно представить в виде обычной дроби т.е. в данном случае это будет 4/3, а затем производить вычисления, 2 возводим в 4 степень получаем 16 и затем берем кубический корень из 16. Таким же образом в случае если нужно возвести число в степень 1,5, степень можно представить в виде обычной дроби 15/10 или 3/2 и произвести вычисления.
Пусть рубашка стоит 100 единиц, тогда брюки будут стоить 130 единиц, а пиджак будет стоить 169 единиц. Он дороже брюк на 39 единиц. Единиц, но не процентов. А вот 39 единиц от 130 единиц будут составлять всего 30%.
Ответ: пиджак дороже брюк на 30%.
Арифметической прогрессией называется ряд чисел,называемых членами арифметической прогрессии, при котором каждый последующей член образуется путём суммы предыдущего члена с некоторым постоянным числом, называемым разностью арифметической прогрессии. Итак, если мы имеем А(n) A"энное", a следующим членом назовём А(n+1) и d - будет разностью арифметической прогрессии, то согласно определения:
А(n+1)= А(n) + d. Отсюда: d = А(n+1)- А(n) Разностью арифметической прогресси является число, пролученное вычитанием из какого либа её члена, ближайшего, перед ним стоящего члена.
В качестве примера можно привести 1,2,3,4,5,6,... представлена арифметическая прогрессия, разность которой d = 1, а первый член её А(1)= 1