Стороны Δ АВС равны АС=5 м, ВС=12 м и АВ=13 м, СН - высота.
Для данных величин выполняется равенство:
13² = 5² + 12²
169 = 25 + 144
169 = 169
тогда по теореме, обратной теореме Пифагора, данный треугольник - прямоугольный. Большая сторона АВ - гопотенуза = 13, .
Тогда высота СН , проведенная из вершины прямого угла С, опущена на гипотенузу АВ и делит треугольник на два подобных треугольника, каждый из которых подобен Δ АВС.
Рассмотрим подобие треугольников АСН и АВС:
СН/СВ = АС/АВ
СН/12 = 5/13
СН = 12*5/13
СН = 60/13
СН приблизительно = 4,6
Ответ: высота равна 4,6 .
Рассмотрим треугольник SAO. он из условия прямоугольный и равнобедренный. так же, по условию мы ищем угол между SO и плоскостью SAC. значит, угол ASO-искомый. там банально: из треугольника SAO- угол ASO равен 45градусов.
ответ: 45градусов
AM = AD - MD = 7 см
т.к DC || MN, то
AN = AM = 7см