Проведем высоту ДМ.
Угол НВС=90гр., как угол при высоте.; НВС больше АВН, исходя из этого угол АВН=НВМ – 50гр.=90-50=40гр.
Отсюда угол АВС=АВН+НВМ=40+90=130гр.
ВАД+АВС=180гр.; Пускай ВАД будет х, АВС=130гр. Так, как их сума = 180гр., то имеем уравнение:
130+х=180
Х=50гр.
Значит уголВАД=х=50гр.
ВАД=ВСД; АВС=СДА
Ответ: 50гр.; 130гр.; 50гр.; 130гр.
Есть теорема о том, что <span>Медианы треугольника делят треугольник на 6 равновеликих треугольников. Поэтому можно сразу сказать, что искомая площадь равна 1/6 площади исходного треугольника. </span>
<span>_______</span>
<span> В ∆АВВ1 и ∆В1ВС основания равны, высота общая. По формуле S=a•h/2 их площади равны. </span>⇒ S∆ ABB1=1/2 S∆ ABC.
<span> По т. о медианах треугольника точка пересечения двух его медиан делит каждую из этих медиан в отношении 2:1, считая от вершины треугольника. </span>
⇒<span> в ∆ АОВ1 основание ОВ1 в два раза меньше основания ВО в ∆ АОВ. </span>
<span>Высоты обоих треугольников, проведенные к основаниям, совпадают. Отношение площадей треугольников с равными высотами равно отношению длин их оснований. </span>
⇒S∆АОВ1:S∆AOB=1/2 , и площадь треугольника АОВ1 равна половине площади ∆ АОВ, или 1/3 половины площади ∆ АВО.
А т.к. S ∆ ABB1=1/2 S ∆ ABC, то S ∆ АОВ1=1/6 площади ∆ АВС=Q/6
Тр. АВС и ВДЕ подобны x - BE
13.5/3 = (7+x)/x
4.5x= 7+x
x=2
BC = 7+x= 9