Всё очень просто. Надо. чтобы (F(x))' = f(x)
Ищем производную данной функции.
(х⁶/6)' = x⁵ = f(x), ⇒F(x) - первообразная для f(x)
Уравнение биссектрисы первой координатной плоскости y=x, y≥0, x≥0.
Найдем все точки на этой прямой, расстояние от которых до точки (-1;6) =5
√((x-(-1))^2 +(y-6)^2)=5, (x+1)^2+(y-6)^2=25, т.к. y=x, тогда
(x+1)^2+(x-6)^2=25, x^2+2x+1+x^2-12x+36=25, 2x^2-10x+12=0,
x^2-5x+6=0, (x-3)(x-2)=0, получаем 2 точки центра окружности и 2 уравнения
1)x=3, y=3, (x-3)^2+(y-3)^2=5^2
2)x=2, y=2, (x-2)^2+(y-2)^2=5^2
Пусть х км/ч - скорость лодки в стоячей воде, тогда ее скорость по течению (х+3) км/ч, а против течения - (х-3) км/ч. На весь путь было потрачено 25/(х+3) +3/(х-3) или 2 часа. Составим и решим уравнение:
25/(х+3) +3/(х-3)=2 |*(x-3)(x+3)
25(x-3)+3(x+3)=2(x-3)(x+3)
25x-75+3x+9=2x^2-18
2x^2-28x-18+66=0 |:2
x^2-14x+24=0
по теореме Виета:
х1=12 х2=2 (не подходит, так как против течения скорость получается 2-3=-1<0)
Ответ: скорость лодки в стоячей воде 12 километров в час.
3sin²x-cosx+1=0 sin²x=1-cos²x
3-3cos²x-cosx+1=0
3cos²x+cosx-4=0
t=cosx, 3t²+t-4=0, D=1+4*4*3=49, t₁=(-1-7)|6= -4|3<-1 ⇒cosx=-4|3 не имеет решения
t₂=(-1+7)/6=1 , ⇒ ⇒ cosx=1, x=2πn, n∈Z