Cos π(x-9)/6 = -0,5
π(x-9)/6=±2π/3 +2πn, nєZ. |×6÷π
x-9=±4+12n, nєZ.
x=±4+9+12n, nєZ.
Тогда наименьший положительный х=-4+9=5
А1=7 а(п_=89 всего таких чисел(,которые не делятся на 6 )71
S=a1+an);2x71=(7+89);2x71=3408
2)у=р/3-х у(2)=4/х чтобы найти точку пересечения приравняем 2 уравнения
р/3-х=4/х получим 3х^2-xp+12=0 D=p^2-36 p=6 или р=-6
условию отвечает р=6
Подкоренное выражение должно быть больше либо равно нуля:
Найдите область значений2cos²а -sin(a)=2(1-sin²(a)) -sin(a)= -2sin²(a)-sin(<span>a)+2
Пусть t=</span>sin(a), 1≤t≤1. Рассмотрим y =-2t²<span>-t+2.
</span><span>
Если НЕ знаем производные, ТО найдем вершину параболы
</span> y =-2t²<span>-t+2.
</span>ДЛЯ y=at²+bt+c координаты вершины: t0=- b/(2a) y0=a(t0)²+bt+c.
ДЛЯ
y =-2t²-t+2
координаты вершины: t0=1/(2(-2)) =-1/4 ∈[-1;1],
y0=-2(-1/4)<span>²-(-1/4)+2=2+1/8=2,125.
</span><span>
Ветви параболы направлены вниз,
у (t0) =</span>2,125 - наибольшее значение .
Найдем y(-1)=-2(-1)²-(-1)+2=-2+1+2=1 и y(1)=-2(1)²-(1)+2=-2-1+2=-1<span>
</span> (значения y=<span>-2t²-t+2 на концах промежутка [-1;1] ).
</span>у (t0) =2,125; y(-1)=1; y(1)= -1, ⇔
y = -2t²-t+2= {2cos²а -sin(a)} ∈[-1;2,125]
Можно преобразовать, выделив полный квадрат:
-2(t²+2·(1/4)t+1/16) +2·(1/16)+2=2(t+1/4)²+2,125
Тогда t0=-1/4 y0=2,125, значения y(-1)=1, y(1)= -1 вычисляем как выше. Также сравниваем y0=2,125; y(-1)=1; y(1)= -1. Понимаем, что
{2cos²а -sin(a)} ∈[-1;<span>2,125]
</span>
Если знаем производные,
найдем наименьшее наибольшее значение функции y= -2t<span>²-t+2
</span> при t∈[-1;1].
1) y¹= -4t-1
2) -4t-1=0 <span>⇔ t=-1/4
3) </span>y(-1)= -2(-1)<span>²-(-1)+2=-2+1+2=1
4)</span>y(1)= -2(1)²-(1)<span>+2 =-2-1+2=-1
5)</span>y(-1/4 )= -2(-1/4 )²-(-1/4 )+2=-1/8+1/4+2=2,125
Также сравниваем y0=2,125; y(-1)=1; y(1)= -1.
Понимаем, что {2cos²а -sin(a)} ∈[-1;<span>2,125]</span>