Y = 2logₐx/ln(ax)
числитель = 2logₐx=2lnx/lna=2/lnа * lnx
знаменатель = ln(ax) = lna + lnx
Преобразования сделали, теперь производную ищем по формулу:
(U/V)'= (U'V - UV')/V²
решение:
y'= ((2/lnа * lnx)' * (lna + lnx) - 2/lnа * lnx *(lna + lnx)' )/(lna + lnx)²=
=(2/хlnа *(lna + lnx) - 2/lnа * lnx *1/x )/(lna + lnx)²=
=(2/xlnа *(lna + lnx - lnx))/(lna + lnx)²= 2lna/(xlnа(lna + lnx)²)
Этого я не указала,но:
нуль подмодульного выражения разбивает функцию на две кусочно-непрерывных из-за геометрического смысла модуля(расстояние),
но мы раскрываем его алгебраически.
Т.е.,при значениях аргумента,стоящих правее нуля подмодульного выражения и его включая,подмодульное выражение принимает неотрицательные значения,поэтому ничего не изменится,когда мы "скинем" модуль.
А если левее его нуля,то подмодульное будет отрицательным,но из-геометрического смысла мы при раскрытии выставляем минус перед модулем(меняем знаки).
Я этого не писала(разбора т.е.),но если вы вчитаетесь внимательно,то вы будете шарить в таких графиках.
Задача несложная,если есть навык,на моём ГИА был посерьёзней график:)
Из точек m:берём ординату вершины одной из парабол,берём ординату абсциссы склейки графиков.
D = b^2 - 4ac = (-9)^2 -4*8*3 = 81 - 96 = -15
Немного неграмотно написан интервал, сам, плиз