<span>По условию в треугольниках ВAС и FAD стороны АВ=AD, AC=AF. Углы при т.А равны как вертикальные. </span>
Δ ВAС=ΔFAD равны по 1 признаку равенства треугольников.
<span>Тогда </span>∠<span>В=</span>∠D, ∠С=∠F. Эти пары углов - <u>накрестлежащие</u>.
<span>ВD и CF- секущие при прямых ВС и FD. <em>Если при пересечении двух прямых секущей накрестлежащие углы равны, то эти прямые параллельны. </em></span>⇒
<span>ВС</span>║<span>DF . Доказано. </span>
<span>Да, и даже более того, и не прямоугольный параллелепипед - это тоже призма (наклонная)</span>
1. Биссектриса делит угол пополам, значит половина угла N равна 42°, а половина угла M равна 21°. Всего в треугольнике 180°, значит
∠NAM=180°-42°-21°=117°.
2. ∠DOB+∠AOD=180°
∠AOD=180°-∠BOD=180°-64°=116°
OK делит этот угол пополам,
∠AOK=116/2=58°
3. Найдем АВС: 180°-146°=34°
Так как треугольник равнобедренный, значит ∠АВС=∠СВА=34°
∠АСВ=180°-34°-34°=112°
3.
В основании пирамиды квадрат АВСD.
Рассмотрим прямоугольный треугольник FOC( FO⊥плоскости АВСD)
По теореме Пифагора
ОС=4 ( египетский прямоугольный треугольник)
АС=8
АС=BD=8
РN- средняя линия ΔАBD, поэтому PN=BD/2=4
AQ=QO=2 ( так как PN - средняя линия)
Рассмотрим прямоугольный треугольник FQO
FQ²=FO²+QO²=3²+2²=9+4=13
FQ=√13
S(Δ NPF)=PN·FQ/2=2·√13/2=√13 кв ед
4.
В основании пирамиды квадрат АВСD.
Рассмотрим треугольник AFC
AF=FC
Равнобедренный треугольник, угол при вершине 60°, значит углы при основании 120°/2=60°. Треугольник равносторонний и АС=4
АС- диагональ квадрата
Пусть сторона квадрата равна х.
По теореме Пифагора из треугольника АСD
х²+х²=4²
2х²=16
х²=8
S(ABCD)=x²=8 кв. ед
Пусть угол - x, тогда x+3x+x-5=180
5x=185
x=37
Ответ: 37, 111, 32