^-^
/|\/|\\/|\\/|\\/|\\/|\\/|\
/|\/|\\/|\\/|\\/|\\/|\\/|\
Решение.
В треугольнике ABD все углы равны, значит, он равносторонний. Все его стороны равны 10.
AB=AD=10.
Поскольку ABCD - параллелограмм, то AB=CD, BC=AD.
Но так как AB еще и равно AD, то все стороны равны...
Значит, треугольники ABD и CBD равны (по трем сторонам).
Формула вычисления площади равностороннего треугольника такова:
S= √3/4 ×а², где а — сторона треугольника.
Sabd=Scbd= √3/4×10²= √3/4×100=25√3.
Площадь ABCD это по сути сумма площадей этих двух треугольников (логично же, да?)
Sabcd= Sabd+Scbd= 25√3 ×2= 50√3.
ОТВЕТ: 50√3, буква В.
<span>Так как призма правильная – основание квадрат. Полная поверхность призмы S = Sбок + 2·Sосн, Sосн = (S –Sбок)/2,<span> </span><span> </span>Sосн = (40 – 32)/2 = 4, S осн= a^2, а= 2, Sбок = Ph, h = Sбок/P, где h –высота, <span> </span>Р – периметр основания, Р = 4а = 4·2 =8, h = 32/8 = 4</span>
Найдем угол ДСЕ = 60-45=15
Угол ДЕС=90-15=75
Угол СДЕ=90