№1<u><em>
БУКВА Г</em></u>
____________________________________
№2<u><em>
БУКВА А</em></u>
____________________________________
№3 <u><em>
БУКВА Б</em></u>
____________________________________
№4 <em><u>
БУКВА Б</u></em>
____________________________________
№5 <em><u>
БУКВА Б</u></em>
____________________________________
№6
ОТВЕТ 1430,72
___________________________________
№7
1)
2)
3)
4)
5)
1. Исследование функции y = x^3 - 3x
1) Область определения D(x) = (-oo; +oo)
2) Область значений E(y) = (-oo; +oo)
3) Четность. y(-x) = (-x)^3 - 3(-x) = -x^3 + 3x = -y(x) - нечетная.
4) Периодичность - непериодическая
5) Пересечение с осями. y(0) = 0;
y = x^3 - 3x = x(x^2 - 3) = 0
x1 = 0; x2 = -√3; x3 = √3
6) Разрывы функции - нет. Вертикальные асимптоты - нет
7) Наклонные и горизонтальные асимптоты - нет
8) Критические точки. Экстремумы
y ' = 3x^2 - 3 = 3(x^2 - 1) = 0
x1 = -1; y(-1) = -1 + 3 = 2 - точка максимума
x2 = 1; y(1) = 1 - 3 = -2 - точка минимума
При x принадлежит (-oo; -1) - функция возрастает
При x принадлежит (-1; 1) - функция убывает
При x принадлежит (1; +oo) - функция возрастает
9) Выпуклость.
y '' = 6x = 0
x = 0; y(0) = 0 - точка перегиба
При x принадлежит (-oo; 0) y'' < 0 - график выпуклый вверх (выпуклый)
При x принадлежит (0; +oo) y'' > 0 - график выпуклый вниз (вогнутый)
10) График сама строй по этим данным.
У меня бумаги в клеточку нет, а в Пайнте трудно построить.
2. Число 72 представить в виде суммы 3 чисел, два из которых равны
a + a + b = 72
b = 72 - 2a
А сумма их квадратов должна быть наименьшей.
a^2 + a^2 + b^2 -> min
2a^2 + (72-2a)^2 = 2a^2 + 4a^2 - 288a + 72^2 = 6a^2 - 288a + 72^2 -> min
S = 6(a^2 - 48a + 72*12) -> min
В точке минимума функции ее производная равна 0
S ' = 6*(2a - 48) = 12*(a - 24) = 0
a = 24; b = 72 - 2*24 = 72 - 48 = 24
Ответ: 24, 24, 24.
Sin , tg, ctg в 4 четверти отрицательны.
Рассмотрим с помощью прямоугольного треугольника.
Косинус - отношение прилежащего катета к гипотенузе
4 - прилежащий катет
5 - гипотенуза
√(5²-4²) = 3 - противолежащий катет.
Синус - отношение противолежащего катета к гипотенузе
sin α = - 3/5
Тангенс - отношение противолежащего катета к прилежащему
tg α = - 3/4
ctgα = 1/tgα = - 4/3
<span>а) |х|=12
х=12 и -х=12
х=-12
Ответ: х=12, х=-12
б) |х|=0
х=0
Ответ: х=0
в) |х|=-3;
модуль всегда положителен либо равен нулю
Ответ: корней нет.
г) 3(3-2х)-2(1+4х)=24
9-6х-2-8х=24
-14х+7=24
-14х=24-7
-14х=17
х=17:(-14)
х=-17/14
х=-1 3/14</span>