Объяснение:
<em>Радиус</em><em> </em><em>-</em><em> </em><em>это</em><em> </em><em>такая</em><em> </em><em>прямая</em><em> </em><em>которая</em><em> </em><em>проводится</em><em> </em><em>из</em><em> </em><em>цен</em><em>т</em><em>ра</em><em> </em><em>окружности</em><em> </em><em>до</em><em> </em><em>точки</em><em>,</em><em> </em><em>лежащей</em><em> </em><em>на</em><em> </em><em>окружности</em><em> </em>
<em>В</em><em> </em><em>данном</em><em> </em><em>случае</em><em> </em><em>центр</em><em> </em><em>окружности</em><em> </em><em>-</em><em> </em><em>точка </em><em>О</em><em> </em><em>=</em><em>></em><em> </em><em>радиусы</em><em> </em><em>-</em><em> </em><em>АО</em><em>,</em><em> </em><em>ОВ</em><em>,</em><em> </em><em>ОС</em><em>,</em><em> </em><em>О</em><em>D</em>
<em>ВСЕГДА</em><em> </em><em>в</em><em> </em><em>окружности </em><em>радиусы</em><em> </em><em>все</em><em> </em><em>равны</em>
<em>Доказывать</em><em>,</em><em> </em><em>что</em><em> </em><em>это</em><em> </em><em>радиус </em><em>не</em><em> </em><em>нужно,</em><em> </em><em>но</em><em> </em><em>упомянуть</em><em>,</em><em> </em><em>что</em><em> </em><em>прямая</em><em> </em><em>явл</em><em>яется</em><em> </em><em>радиусом</em><em> </em><em>-</em><em> </em><em>нужно</em>
<em>Если </em><em>что</em><em>,</em><em> </em><em>диаметр</em><em> </em><em>состоит</em><em> </em><em>из</em><em> </em><em>2</em><em> </em><em>одинаковых</em><em> </em><em>радиусов</em><em> </em><em>и</em><em> </em><em>диаметр</em><em> </em><em>-</em><em> </em><em>прямая</em><em>,</em><em> </em><em>проходящая</em><em> </em><em>из</em><em> </em><em>одной</em><em> </em><em>точки</em><em> </em><em>окружности</em><em>,</em><em> </em><em>до</em><em> </em><em>другой</em><em> </em><em>точки</em><em> </em><em>окружности</em><em> </em><em>и</em><em> </em><em>при</em><em> </em><em>этом</em><em> </em><em>проходящая</em><em> </em><em>через</em><em> </em><em>центр</em><em> </em><em>окружн</em><em>ости</em>
<em>Диаметры</em><em> </em><em>-</em><em> </em><em>АС</em><em> </em><em>и</em><em> </em><em>BD</em>
Ответ d.
По теореме Пифагора находим диагональ квадрата, 7√2.
ΔDBE - равнобедренный с прямым углом, углы при основании DE будут по 45°.
Что означает цифра 3 в тексте вопроса?
1)30+45=75градусов(нарисовал угол в 75 гр.)
2)11*4=44градусов(нарисовал угол в 44 гр.)
3)120-30=90градусов(нарисовал угол в 90 гр.)
4)60*2=120градусов(нарисовал угол в 120 гр.)
В задаче неполное условие. Должно быть так:
Дано: ΔАВС, АВ = АС, АН - высота.
∠В = 38°, ∠МВА = 104°.
Доказать: МВ║АС.
Доказательство:
∠ACB = ∠ABC = 38° как углы при основании равнобедренного треугольника,
∠KBC = 180° - ∠MBA - ∠ABC, так как ∠КВМ = 180° - развернутый,
∠КВС = 180° - 104° - 38° = 38°
∠КВС = ∠АСВ = 38°, а эти углы - накрест лежащие при пересечении прямых МВ и АС секущей ВС, значит
МВ ║ АС.