Пусть CD=x, тогда АС=3х.
Площадь прямоугольного треугольника ACD равна половине произведения катетов
C другой стороны, можно вычислить площадь как половинe произведения основания АС на высоту DH.
Поэтому
AD·DC = AC· DH
16·x=3·x·DH ⇒ DH=16/3
Второй способ.
<span>Из прямоугольного треугольника АСД
sin </span>∠<span> А = СD/ АС= 1/3.
Из прямоугольного треугольника АНD:
sin</span>∠<span> А = НD/АD
Поэтому НD=АD</span>·<span> sin </span>∠<span>A=16</span>·(<span>1/3)= 16/3
</span>
Ответ. HD=16/3
нет поскольку они могут совпадать
4+9xКВ=25XКВ
4= 16XКВ
4/16=XКВ
X=1/2
5*1/2+3*1/2+ 2 =6
ПЕРИМЕТР РАВЕН 6
Смотри рисунок ...............................................