Построение: сначала чертишь отрезок АВ равный 7 см, затем с помощью транспортира откладываешь две прямые: АС с углом в 30 градусов, и ВС с углом в 20 градусов. Затем ищешь точку пересечения этих двух прямых - там и будет точка С.
Угол 2 равен углу 1 как накрест лежащие.
Соответственно угол 2 равен 115°
из точки В отложить вектор параллельный данному(СА) и направить вэтот вектор в ту же сторону
Рассмотрим рисунок.
Красным обозначены отрезки, соединяющие середины сторон четырехугольника АВСD.
Нетрудно заметить, что эти отрезки - средние линии треугольников АВС, АDC, ABD, BCD.
Получившийся четырехугольник имеет две стороны, равные каждая половине BD , и две - равные каждая половине АС.
Следовательно, <u>периметр этого четырехугольника</u> равен сумме диагоналей четырехугольника АВСD и равен 31+9=40.
Кроме того, этот четырехугольник - параллелограмм, т.к. каждая пара противоположных сторон параллельна одной из диагоналей исходного четырехугольника и потому параллельна друг другу.
AB = BC =CA
A1B1 B1C1 C1A1
10 = 8 = 12
5 x 6
5*2 =10 6*2=10
8:2=4
Треугольники подобны по 3 сторонам