Центры касающихся окружностей и их общая точка касания лежат на одной прямой.
При внутреннем касании расстояние между центрами окружностей равно разности радиусов:
∠КВС = ∠KAD как накрест лежащие при пересечении параллельных прямых ВС и AD секущей АК.
∠К -общий для треугольников AKD и ВКС, ⇒
ΔAKD подобен ΔВКС по двум углам.
KB : KA = KC : KD = BC : AD
KB : (1,5 + KB) = 1,2 : 1,8 = 2 : 3
3·KB = 3 + 2·KB
KB = 3 см
KC : (1,2 + KC) = 2 : 3
3KC = 2,4 + 2KC
KC = 2,4 см
Ответ: сторона АВ продолжена на 3 см, сторона CD продолжена на 2,4 см.
Площа даного трикутника дорівнює площа проекції помножити на косинус кута між площинами трикутників.площа проекції дорівнюєдев"ять коренів з шістдисяти трьох поділити на 2 площа даного трикутника дорівнює чотири корені з шістдесяти трьох
МО-это расстояние от точки М до плоскости (МО=12см). Из точки М проведены две наклонные МК=15см и МР=20см. Найдем проекции: ОК²=МК²-МО²=15²-12²=81, а ОР²=20²-12²=256. Т.к. нужно, чтобы проекции были перпендикулярны, то треугольник ОРК должен быть прямоугольный , в которого гипотенуза РК²=ОК²+ОР²=81+256=337. Рассмотрим треугольник МРК, в нем надо найти угол РМК по трем сторонам. По теореме косинусов cos MPK=(MP²+MK²-PK²)/(2*MK*MP)=(20²+15²-337)/2*20*15=288/600=12/25=0,48. Угол МРК=61градус.