1.(a+b)+(a^2-b^2)=(a+b)+(a+b)(a-b)=(a+b)(1+a-b)
4)21z+11-11-17z+5z^2
5z^2+4z=0
Z(5z+4)=0
Z=0
5z+4=0
5z=-4
Z=-0,8
1) 11x^2-8x^2-6x+6x-27=0
3x^2-27=0
3x^2-27=0
3x^2=27
X^2=9
X=+-3
2)26+5y-0,5y^2-2,5y^2-26=0
-3y^2+5y=0
Y(-3y+5)=0
Y=0
(-3y+5)=0
-3y=5
Y=-5/3
Y=(x+4)^2(x+8)+2 [-5;8]
Раскроем скобки:
y=(x^2+8x+16)(x+8)+2=x^3+8x^2+8x^2+64x+16x+128+2=
=x^3+16x^2+80x+130;
Найдем производную функции:
y'=3x^2+32x+80
Приравняем производную к нулю:
3x^2+32x+80=0
D=32^2-4*3*80=64
x1=(-32-8)/6=-20/3
x2=(-32+8)/6=-4
_____+_____-20/3______-____-4____+______
max. min.
В указанный отрезок входит только х=-4.
Будем искать значение функции в точках: x=-5, x=-4, x=8.
y(-5)=(-5+4)^2(-5+8)+2=5
y(-4)=(-4+4)^2(-4+8)+2=2
y(8)=(8+4)^2(8+8)+2=144*16+2=2306
Ответ: У наим.=2