2)|x|(|x|-5) = 0
|x| = 0 => x = 0
|x| = 5 => x = ±5
3)|x²-x-1| = 1
[x²-x-1 = 1
[x²-x-1 = -1
1. x²-x-2 = 0
Теорема Виета:
{x1+x2 = 1
{x1•x2 = -2
x1 = -1
x2 = 2
2. x²-x = 0
x(x-1) = 0
x = 0
x = 1
4)|x²+5| = 6x
x²+5 при любом x положительный, знак модуля можно убрать
x²+5 = 6x
x²-6x+5 = 0
Теорема Виета:
{x1+x2 = 6
{x1•x2 = 5
x1 = 1
x2 = 5
Найдём координаты точки пересечения двух прямых:
Так как третья прямая тоже проходит через точку пересечения А, то подставим координаты точки А в уравнение этой прямой.
x=-2 - очевидное решения. Других решений нет, поскольку при x+2>0 левая часть положительна, а правая отрицательна, а при x+2<0 левая часть отрицательна, а правая положительна.
Ответ: - 2
1-|x| ≠ 0
x ≠ ±1
Ответ: х ≠ ±1 или по другому x принадлежит (-±{-∞;-1) (-1;1) (1;+∞)