2)|x|(|x|-5) = 0
|x| = 0 => x = 0
|x| = 5 => x = ±5
3)|x²-x-1| = 1
[x²-x-1 = 1
[x²-x-1 = -1
1. x²-x-2 = 0
Теорема Виета:
{x1+x2 = 1
{x1•x2 = -2
x1 = -1
x2 = 2
2. x²-x = 0
x(x-1) = 0
x = 0
x = 1
4)|x²+5| = 6x
x²+5 при любом x положительный, знак модуля можно убрать
x²+5 = 6x
x²-6x+5 = 0
{x1+x2 = 6
{x1•x2 = 5
x1 = 1
x2 = 5
5√3 х + 1/2√12 х - 10√0,03 х = 5√3 х + 1/2*2√3 х - 10* 0,1√3 х =
=5√3 х + √3 х - √3 х = 5√3 х