(а-х)(а+х)(а^2 + х^2)=(а^2 - x^2)(a^2 + x^2) = a^4 +a^(2)x^(2)-a^(2)x^(2) - x^4 = a^4 - x^4
[(n+1)!-(n+2)!]/(n+3)!=(n+1)!(1-n-2)/[(n+1)!*(n+2)*(n+3)]=
=-(n+1)/(n²+5n+6)
lim[n²(-1/n-1/n²)]/[n²(1+5/n+6/n²)]=lim(-1/n-1/n²)/(1+5/n+6/n²)=(-0-0)/(1+0+0)=0
2sinxcosx - 2sinx + cosx - 1 = 0
<span>2sinx( cosx -1) +cosx - 1 = 0 </span>
<span>( cosx - 1 )( 2 sinx +1 ) </span>