Центр вписанной окружности лежит на пересечении биссектрис...
если к сторонам треугольника провести радиусы в точки касания с окружностью, они будут перпендикулярны сторонам треугольника...
в острых углах треугольника получится по два <u>равных</u> прямоугольных треугольника (их гипотенузы будут биссектрисами острых углов --- т.е. углы в них будут равные, и катеты равны радиусу вписанной окружности),
значит и вторые катеты будут равны... (на рисунке я их выделила одним цветом)))
а в прямом углу исходного треугольника радиусы вырежут квадрат)))
по данным катетам можно найти гипотенузу:
с^2 = 15*15*2 + 8*8*2 = 2*289
с = 17V2
и из рисунка очевидно равенство:
17V2 = (15V2 - r) + (8V2 - r)
2r = (15+8-17)V2
r = 3V2
искомое расстояние --- диагональ квадрата со стороной r...
x^2 = 2*r^2
x = rV2
x = 3V2*V2 = 6
Ответ Б)135
сумма смежных углов 180 градусов, значит меньший угол - 45градусов(в 3 раза меньше большего),а больший - 135 градусов
ΔABC - равнобедренный: AB = AC
∠B = ∠C = 72° (углы при основании BC)
Сумма углов треугольника равна 180° ⇒
∠A = 180° - ∠B - ∠C = 180° - 72° - 72° = 36°
Вписанный угол равен половине дуги, на которую опирается ⇒
Дуга ∪BC = 2*∠A = 2*36° = 72°
Ответ: ∪BC = 72°
<A:<B:<C=1:2:3
<A=x, <B=2x, <C=3x
<A+<B+<C=180
x+2x+3x=180
6x=180
x=180:6
x=30(град)-<A
2*30=60(град)-<B
3*30=90(град)-<C
Проверка: 30+60+90=180
180=180
Ответ: 30 град, 60 град, 90 град